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This paper reports a temporal instability analysis of a moving thin viscous liquid 
sheet in an inviscid gas medium. The results show that surface tension always 
opposes, while surrounding gas and relative velocity between the sheet and gas 
favour, the onset and development of instability. It is found that there exist two 
modes of instability for viscous liquid sheets - aerodynamic and viscosity-enhanced 
instability -in contrast to inviscid liquid sheets for which the only mode of 
instability is aerodynamic. It is also found that axisymmetrical disturbances control 
the instability process for small Weber numbers, while antisymmetrical disturbances 
dominate for large Weber numbers. For antisymmetrical disturbances, liquid 
viscosity, through the Ohnesorge number, enhances instability at small Weber 
numbers, while liquid viscosity reduces the growth rate and the dominant 
wavenumber at large Weber numbers. At the intermediate Weber-number range, 
liquid viscosity has complicated effects due to the interaction of viscosity-enhanced 
and aerodynamic instabilities. I n  this range, the growth rate curve exhibits two local 
maxima, one corresponding to aerodynamic instability, for which liquid viscosity has 
a negligible effect, and the other due to  viscosity-enhanced instability, which is 
influenced by the presence and variation of liquid viscosity. For axisymmetrical 
disturbances, liquid viscosity always reduces the growth rate and the dominant 
wavenumber, aerodynamic instability always prevails, and although the regime of 
viscosity-enhanced instability is always present, its growth rate curve does not 
possess a local maximum. 

1. Introduction 
I n  most spray applications, liquid issues from an orifice in the form of either a 

circular jet (full cone) such as in diesel engines, or a thin liquid sheet such as produced 
by a swirl nozzle (hollow cone) in gas burners, or by a fan spray nozzle. The breakup 
mechanism of a circular liquid jet has been extensively investigated over the past 
century. A theoretical understanding of the breakup mechanism of low-speed 
circular jets has been well established (McCarthy & Molloy 1974; Bogy 1979), 
following Rayleigh’s (1879) classical analysis of the capillary instability of a liquid 
cylinder. The dominant mode of instability leading to  a jet breakup is axisymmetrical 
disturbances, which result in drop formation. A nonlinear analysis has been carried 
out by Yuen (1968) along with experimental investigations (Goedde & Yuen 1970). 
The effects of liquid viscosity and liquid velocity relative to the surrounding medium 
were introduced by Weber (1931) and Sterling & Sleicher (1975), respectively. 

On the other hand, there has been little investigation of the breakup of a moving 
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thin liquid sheet, which is also of importance in many of the practical applications 
mentioned above. The two plane interfaces between two fluids, one of which is a 
liquid (such as water or liquid hydrocarbon fuels) and the other a gas (such as air), 
are in dynamic equilibrium, though both fluids may be moving a t  different velocities. 
That is, neither kinetic nor interfacial tension forces are acting on the liquid. 
However, if a protuberance is produced on the interface owing to any disturbances, 
forces acting on the interfaces develop. The surface tension force always tends to 
restore the interface back into its original equilibrium position, while the disturbance- 
induced normal stresses in both liquid and gas generally enhance the degree of 
instability, i.e. increase the amplitude of the disturbance. A relative velocity between 
the liquid and gas promotes the growth of disturbances until the liquid sheet 
disintegrates into fragments, which rapidly contract into unstable ligaments under 
the effect of surface tension. Finally, the ligaments are broken into a multitudc of 
droplets. 

The characteristics of these instabilities have been analysed by Squire (1953) and 
Hagerty & Shea (1955) for inviscid liquid sheets of uniform thickness in an inviscid 
gas medium. Their results show that the dominant type of disturbance inducing 
instability and eventually leading to the breakup of the sheet into droplets is 
antisymmetrical, and surface tension effects always tend to smooth out any 
protuberances. The principal sources of sheet instability are the aerodynamic forces 
arising from the interaction of the sheet with thc surrounding gas medium. The 
winner in the competition between the capillary forces and aerodynamic forces 
determines whether a disturbance will grow or decay. When the capillary forces 
dominate, disturbances will die out, and the sheet is stable ; if the aerodynamic forces 
dominate, disturbances will be further enhanced. In  the latter case, the sheet 
becomes unstable, a t  least according to linear stability theory. The ratio of the 
aerodynamic forces to the capillary forccs is defined as the gas Weber number, We,. 
Thus, when the gas Weber number cxcccds a critical value, instability of the sheet 
occurs which in turn leads to the sheet breakup. This critical value was found by 
Squire (1953) to be We,, = j5 = p,/p[ for antisymmetrical disturbances, where j5 
represents the gas to liquid density ratio. Dombrowski & Johns (1963) extended the 
analysis by including the effect of liquid viscosity. However, -their results arc only 
valid for large gas Weber numbers owing to  approximations made in their analysis. 

I n  summary, the breakup mechanisms for a low-speed circular liquid jet and for 
a moving thin liquid sheet have several distinctly different features (Reitz 1976; 
Lefebvre 1989) : 

(i) For the jet, the dominant type of disturbance which induces instability and 
eventually lead to its breakup into droplets is axisymmetrical; whereas i t  is 
antisymmetrical for the sheet. 

(ii) For the jet, the principal sources of instability are the capillary forces for 
Rayleigh instability, and aerodynamics forces for wind-induced instability ; while for 
the sheet they are the aerodynamic forces, i.e. due to the aerodynamic interaction of 
the sheet with its surrounding gas medium. Thus, without the presence of a gas 
medium (a vacuum environment), the sheet would always be stable. 

(iii) For the jet, the effect of surface tension (or capillary force) induces instability 
(destabilizing) and results in drop formation at  negligible relative velocity - 
Rayleigh instability ; a t  finite relative velocity, surface tension reduces instability 
(stabilizing) - wind-induced instability. For the sheet, surface tension always opposes 
the onset and development of instability. 

(iv) For the jet, the relative velocity between liquid and gas phases contributes 
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to, but is not necessary for breakup, whereas it is required for the breakup of the 
sheet. 

In view of the above differences, a theoretical investigation has been conducted on 
the instability of a moving thin liquid sheet of uniform thickness, including the effect 
of liquid viscosity. Another motivation for the present work is that the moving thin 
liquid sheet is a reasonably good approximation to sheet breakup processes in hollow 
cone sprays, which has numerous practical applications. 

The present study shows that at small gas Weber numbers, axisymmetrical 
disturbances control the instability processes, contrary to the conclusions reached by 
Squire (1953) and Hagerty & Shea (1955), while a t  slightly larger gas Weber 
numbers, antisymmetrical disturbances dominate. For antisymmetrical distur- 
bances, the introduction of even small liquid viscosity changes the development of 
an instability drastically, especially a t  low Weber numbers. When the gas Weber 
number is smaller than a critical value, We,, = p ,  aerodynamic instability disappears 
and liquid viscosity under this condition enhances the disturbances. When the gas 
Weber number is larger than the critical Weber number, but still of comparable 
value ; both viscosity-enhanced and aerodynamic instabilities interact with each 
other, displaying very complicated effects of liquid viscosity on the instability 
processes. When the gas Weber number substantially exceeds the critical value, 
aerodynamic instability dominates the instability processes, and liquid viscosity acts 
to reduce the growth rate and to shift the dominant disturbances to longer 
wavelengths. For axisymmetrical disturbances, liquid viscosity always reduces the 
growth rate and dominant wavenumber, aerodynamic instability always dominates, 
and the regime of viscosity-enhanced instability is always present, but in a much 
smaller range. 

We are mainly interested in the phenomenon of the sheet breakup processes, which 
eventually lead to drop formation. Thus, the present study focuses primarily on the 
growth of the disturbance waves through an instability, and does not yield any 
prediction on the sizes of the subsequently formed drops. This latter point has been 
addressed theoretically by Li & Tankin (1987, 1988) through the application of the 
maximum entropy principle. 

2. Dispersion relation for antisymmetrical disturbances 
Consider a two-dimensional liquid sheet with density pl, viscosity pf, surface 

tension r and uniform thickness 2a, moving at velocity U, through an inviscid 
stationary gas medium of density pg. That is, the reference frame is attached to thr 
surrounding gas medium ; therefore the velocity U,, can be regarded as the relative 
velocity of the liquid sheet and the gas medium. The velocity U,, is small compared 
to the velocity of sound; thus the assumption of incompressibility for both fluids is 
valid. Gravitational effects are neglected. The coordinates are chosen such that the 
direction of the x-axis is parallel to the direction of the velocity U,, and the y-axis 
is normal to the liquid sheet with its origin located a t  the midplane of the sheet. 
These quantities are illustrated in figure 1. 

2.1. Liquid-gas interfaces 
For antisymmetrical disturbances, the displacements of corresponding point,s o 1 1  t hc 
two interfaces are equal in magnitude and in the same direction. Hence. the two 
interfaces are regarded to have the following form : 

y = +a+& 6 = 6,exp (ot+ikx), (1 )  
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FIGLTRE 1. Antisymmetrical disturbances. 

where y = f u  are the equilibrium positions of the two interfaces, i.e. the positions 
with no disturbances; go is the initial amplitude of thc disturbancc, and is taken to 
be much smaller than the half-width of the shect, u ;  k is the wavenumber of the 
disturbance, and k: = 27c/h, where A is the wavelength of the disturbance ; w = w, + i q  
is a complex variable. The real part of w ,  w,, represents the rate of growth or decay 
of the disturbance ; its imaginary part wi is 271 times the disturbance frequency ; and 
-ui/k is the wave propagation velocity of the disturbance. Hence, the disturbance 
frequency and the wave velocity are related. t is the time and i = .\/ - 1. 

2.2. Liquid motion 

The base flow of the liquid sheet is a uniform flow of velocity Uo along the x-direction, 
with zero velocity along the y-direction and ambient pressure (zero) in the liquid 
sheet. Assume u, v are the liquid velocity components in the x,y-directions, 
respectively, resulting from a disturbance, and p the pressure due to the disturbance. 
All these quantities (u. v and p )  are presumcd to be very small. The equations of 
continuity and motion are linearized by neglecting all nonlinear terms in these small 
disturbance quantities, and can be expressed as follows : 

Continuity 

Momentum 

where 

(3) 

is the Laplacian operator, and vy is the liquid kinematic viscosity. 
Equations (2)-(4) are subjected to the following boundary conditions : at the two 

interfaces, which can be taken as y z & a  (first-order approximation in the small 
displacement of the interfaces, 5, due to the disturbancc), there should be no net mass 
flux across the interfaces. Thus, the normal velocity at the interfaces derived from 
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(2)-(4) should be equal to  that derived from (1).  The shear stress should vanish a t  the 
interfaces, and the normal stress across the interfaces should be continuous. These 
boundary conditions, in mathematical form, are 

a t  aE 
at ax 

v = -+Uo-  a t  y z f a ,  

rZy = p ,  -+- = 0 a t  y x k a ,  (: ::) 
~yy-rg ,yy  = P, a t  Y z f a ,  (7) 

where rZy and ryy are the liquid shear and normal stresses, and rg,  yzl is the gas normal 
stress. p ,  is the pressure induced by surface tension. 

To solve (2)-(4), the liquid velocity is separated into two parts: 

u = U 1 + U 2 ,  v = V 1 + V 2 ,  (8) 
where (ul ,  vl) are the inviscid, irrotational solution in the liquid ; thus, (u2 ,  v2), which 
is left over, contains the effect of liquid viscosity. 

As pointed out by Levich (1962), the pressure should be the same as that in an 
inviscid liquid because the presence of viscosity affects the wave frequency but not 
the pressure within the liquid. This approach was also adopted by Sterling & Sleicher 
(1975) in deriving the dispersion relation for the capillary instability of circular jets. 

For inviscid liquid with irrotational flow, there exists a velocity potential, q5, such 
that 

and + satisfies V 2 $  = 0. 

The pressure is given by 

Equations (2), (8)- (10) show that u2 and v2 are related as follows : 

au2 av2 - 
ax ay 
-+- - 0. 

Equations (3) and (4) become, respectively, 

Now let 

au, au -+uoL at ax = v,v2u2, 

av2 av2 - 
- + U” - - v, v 2 v 2  at ax 

where +, very similar to a stream function, is an unknown function of the time and 
space coordinatcs. Equation (12) is automatically satisfied, and (13) and (14) reduce 
to 
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Considering the disturbances given in ( l ) ,  it is assumed that 4 and @ take the 
following form : 

4 = @(y) exp (wt + ikx), (17) 
@ = Y(y) exp (wt + ikx). (18) 

W ( y )  - k,@(y) = 0, (19) 

!F(y)-s,Y(y) = 0, (20) 

Substitution of (17)  and (18) into (10) and (16) gives 

w + ikUo 

vc 
where s2 = k2+ 

Equations (19) and (20) can be easily solved to yield 

@(y) = C, eky + C, e-ky, 

Y(y) = C, esY+ C, eCY, 

4 = (C, eky + C, e@') exp (wt + ikx), 
@ = (C, esy + C, e0Y) exp (wt + ikx) . 

(21) 

(22) 
where C,, C,, C,, and C, are constants of integration to be determined later. Thus, 

(23) 

(24) 

From the boundary conditions, (5) and (6), the unknown constants of integration are 
determined : 

k2 + s2 C --c = 
- 2k cosh (ha) ""' 

ik 
cosh (sa)  

c, = c, = - veto, 

whence the normal stress in the liquid sheet is 

= {be (w+ikUo)+2 ,uek2]  (eky-ePky) C,-i2,u~ks(esY-ee-"Y)C,}exp (wt+ikx), (27) 
where C, and C, are given in (25) and (26). 

2.3. Gas motion 

I n  our present analysis, the effect of the surrounding gas medium on the instability 
of liquid sheet comes about through the normal stress in boundary condition (7).  The 
gas medium is assumed to be inviscid, and stationary before the disturbances set in. 
Hence, the governing equations for the disturbed gas motion are: 

Continuity 

Momentum 

au av 
ax ay 
A+>=(). 

where the subscript g denotes quantities for the gas medium. The boundary 
conditions for the inviscid gas require that across the liquid-gas interfaces the 
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normal velocity be continuous (tangential velocity could have a jump), and far away 
from the liquid sheet the effects of the disturbances die out. Hence the boundary 
conditions are 

a6 
at 

v g = -  at y x f a ,  

v g = O  as y + f o ~ .  (32) 
Since the gas medium is regarded as inviscid, the velocity can be expressed in 

terms of a velocity potential. Furthermore, the velocity potential for the gas motion 
is assumed to be 

q5g = @,(y) exp (wt + ikz) (33) 

in accordance with the assumed form of the disturbance given in (1). Thus, (28) and 
the boundary conditions given in (31) and (32) yield 

q5g = - ( o / k ) e x p [ k ( a - y ) ] 6 , e e x p ( w t + i k z )  for y 2 a. (34) 

Hence, considering (29) and (30), the normal stress in the gas medium becomes 

aq5 
‘Tg,yy = -P, = P - 

g at 

0 2  

g k  
= - p  -exp[k(a-y)]~,exp(wt+ikz). (35) 

2.4. Pressure induced by surface tension 
The pressure induced by surface tension is, to the first order in 6,  

because 6 is taken to be very small. R is the radius of curvature of the interfaces. For 
antisymmetrical disturbances, 6 is given by (1). Hence, p, becomes 

p, = -crk260exp(wt+ikz). (36) 

2.5. Dispersion relati.on 

Substitution of (27), (35), and (36) into (7)  for y = a leads to the following dispersion 
relation between the complex growth rate w and the disturbance wavenumber k :  

[Pc(~+ikUO)+2p,k2] [vd(k2+s2)] tanh (ka) 
-4p,v ,k3stanh(sa)+pgw2+ak3 = 0, (37) 

where s depends on k, w ,  U, and v,. 

3. Dispersion relation for axisymmetrical disturbances 
The derivation process of the dispersion relation for axisymmetrical disturbances 

is very similar to that for antisymmetrical ones. The results are very similar to (37) 
except that tanh(ka) and tanh(sa) are now replaced by coth(ka) and coth(sa) 
respectively : 

[p/(w+ikUo)+2p, k2] [v,(k2+s2)]coth (ka) 

-4p,v,k3scoth(sa)+pgw2+crk3 = 0. (38) 
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Equations (37) and (38) are very complicated, and analytical solutions for w as a 
function of k do not exist; therefore a numerical solution is required. However, for 
certain limiting conditions, these equations can be solved analytically. 

4. Analyses and discussion 
The dispersion relations, (37) and (38), show clearly that the surface tension effects 

always tend to stabilize the liquid sheet; that is, to smooth out any protuberances 
on the sheet boundaries. However, for a circular liquid jet, surface tension may 
induce instability - Rayleigh's instability ; or may reduce instability ~ wind-induced 
instability, depending on the relative velocity of the jet and ambient gas medium. 

To facilitate the analysis, (37) and (38) are expressed non-dimensionally as follows: 

(G1 +4m2Z) Gl tanh (m)  

+4m3Z2[mtanh (m)-(m2+3,/Z)~tanh (m2+3 , /Z) f ]+p32+m3 = 0, (39) 

(01 +4m2Z) 3, coth (m)  

+4m3Z2[mcoth (m)-((m2+6,/Z)fcoth(m2+~l/Z)f]+p32+m3 = 0, (40) 

where 3 = S,+i (We, )~3 , ,  3, = 3+i(We,)im, 3, = w , / ( c ~ / p , a ~ ) i  and 6, = wi / (Uo /a ) .  
The other parameters in (39) and (40) are, respectively, the liquid Weber number, 
We, = p, qa/cT, which represents the ratio of liquid inertial effects to capillary 
effects ; and the Ohnesorge number, Z = p,/(p/ aa);, which is equal to the ratio of the 
square root of the liquid Weber number to  the liquid Reynolds number. Hence 1; is 
physically the ratio of viscous forces to capillary forces. p denotes the density ratio 
of the surrounding gas to the liquid, and m = ka is the dimensionless wavenumber. 

For inviscid liquid, p, = 0 (that is, Z = 0), (39) and (40) readily reduce to the 
results obtained by Squire (1953) and Hagerty & Shea (1955) : 

I m 
w, = { We, tanh (m)  -m[p" + tanh (m)]} ;  

p" + tanh ( m )  

for antisymmetrical disturbances ; and 

- m 
w, = {We, coth (m) - m[p + coth (m)]}f  p + coth (m)  

for axisymmetrical disturbances, where We, = pg q a / u  is the gas Weber number, 
which represents the ratio of aerodynamic forces (generated by the relative velocity 
between gas medium and liquid) exerted on perturbations on the liquid-gas 
interfaces, to capillary forces. It is clear from (41) and (42) that capillary forces 
(surface tension effects) always tend to stabilize the liquid sheet, that is, to damp out 
any disturbances ; and aerodynamic forces are responsible for the occurrence of 
instability. I n  this sense, the instability expressed by (41) and (42) for an inviscid 
liquid sheet is termed aerodynamic instability. 

It might be mentioned that the reference parameters chosen by Dombrowski & 
Johns (1963) for the non-dimensionalization of the growth rate and the disturbance 
wavenumber are not appropriate since the Weber number and the Ohnesorge 
number did not appear explicitly in the final form of their dispersion relation. These 
dimensionless numbers have been identified as key parameters in describing the jet 
breakup processes (Reitz 1976 ; Lefebvre 1989). 
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4.1. Instability limits 

The instability limit is the maximum wavenumber of disturbances giving rise to 
instability, which corresponds to the positive value of the disturbance growth rate; 
that is, w,  (or (3,) > 0. The wavenumber a t  thc instability limit is usually called the 
limiting wave number, m,, which can be obtained by setting w, (or 6,) = 0. For 
viscous liquid sheets, both (39) or (40) give the limiting wavenumber as 

m, = We,. (43) 

For inviscid liquid, the limiting wavenumber, m,,,, can be obtained from (41) and 
(42), which become 

We,tanh(m,,,)-m,,,@+tanh (mo,I)] = 0 

for antisymmetrical disturbances ; and 

(44) 

We,coth(m,,,)-m,,,@+coth (m,,,)] = 0 (45) 

for axisymmetrical disturbances. It is interesting to note that the instability limit in 
the viscous case cannot be reduced to that appropriate in the inviscid cas,e. This 
rather odd effect of viscosity on the instability will be explored later. 

For long-wave disturbances, mo, I << 1, tanh (m,, ,) w m,,, I and coth (m,, ,) x l/m,. I ,  

then (44) and (45) reduce to 

m,, I = We, - p' (46) 

for antisymmetrical disturbances ; and 

for axisymmetrical disturbances. From (46) i t  is clear that when the gas Weber 
number is less than its critical value, We,,, = p", there will be no instability arising 
from the antisymmetrical disturbances. This result was first obtained by Squire 
(1953). 

On the other hand, for short waves, m0,, % 1, tanh (m0,,) x 1, and coth (mo,J x 1, 
then both (44) and (45) reduce to 

Generally, (44) and (45) have to be solved numerically. This has been done and one 
of the results is presented in figure 2 for the density ratio of p' = 0.1. Curve 1 in the 
figure represents the limiting wavenumber for axisymmetrical disturbances on 
inviscid liquid sheets ; curve 2 that for antisymmetrical disturbances on inviscid 
liquid sheets; and curve 3 that for viscous liquid sheets. It is clear from figure 2 and 
(46)-(48) that  for non-viscous liquid sheets, the instability range for axisymmetrical 
disturbances is always wider than that for antisymmetrical disturbances ; and both 
limiting wavenumbers approach the same asymptotic value of We,/( 1 +p"),  from 
above for axisymmetrical disturbances and from below for antisymmetrical 
disturbances. The same instability range for each type of disturbance shown by 
Hagerty & Shea (1955) is due to the approximation they introduced. 

Equation (43) indicates that  liquid viscosity does not directly affect the range of 
hydrodynamic instability, which is shown to be governed by the ratio of aerodynamic 
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FIGURE 2. Limiting wavenumber for inviscid liquid sheets (b = 0.1; curve 1, axisymmetrical 

disturbances ; curve 2, antisymmetrical disturbances) and viscous liquid sheets (curve 3).  

forces to capillary forces. However, liquid viscosity does broaden the instability 
region. This can be seen by comparing (43) to either (44) or (45). It is even more 
evident if (43) is compared to the limiting cases presented in (46), (47), and (48). In  
figure 2, the region under curve 2 is the instability region for antisymmetrical 
disturbances due to aerodynamic interaction ; that is, the region of aerodynamic 
instability mentioned before. The instability region between curves 2 and 3 is due to 
the presence of liquid viscosity. That is, there is a region of instability that is induced, 
or more precisely, enhanced by liquid viscosity. This mode of instability is henceforth 
termed viscosity-enhanced instability. For axisymmetrical disturbances, the region 
under curve 1 in figure 2 is the region of aerodynamic instability ; while the region 
between curves 1 and 3 is viscosity-enhanced instability. 

The finding of viscosity-enhanced instability might be very surprising at  first, 
because the effect of viscosity, as might be expected, tends to damp out or dissipate 
disturbances under most situations. However, in the existing theory of hydro- 
dynamic stability, there are at  least three situations where the effect of fluid 
viscosity may have the opposite effect, depending on the flow conditions. The first 
description of the destabilizing effect of fluid viscosity on base flow field is due to 
Reynolds (1883). Although he was unable to suggest a physical mechanism by which 
viscosity would induce or enhance instability, he refused to exclude such a 
possibility. Heisenberg (1924) was the first to show mathematically that viscosity 
could actually cause instability in plane Poiseuille flow, which was later confirmed by 
Lin (1944). Another situation where viscosity may have destabilizing effect is the 
flow over a flat plate (that is, a Blasius boundary layer; for a discussion and more 
references, see Schlichting 1979). A third is the BBnard problem (thermal instability 
of a layer of fluid heated from below) under constant rotation (Chandrasekhar 1961). 

As demonstrated by Tollmien (1929) for flow over a flat plate, the influence of 
viscosity on disturbances is significant not only in the immediate vicinity of the wall, 
but also in the neighbourhood of the critical layer, where the velocity of wave 
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propagation of the disturbances becomes equal to the velocity of the base flow. The 
presence of viscosity causes large changes in this critical layer. It is evident that 
viscosity plays a rather complicated dual role ~ on one hand it has a damping effect 
by dissipating energy; on the other, it is actually the cause of instability. At present, 
as pointed by Drazin & Reid (1981), the existing stability theory for viscous cases is 
not nearly as complete or general as for inviscid cases, and it provides only a partial 
understanding of the role of viscosity in those circumstances when it is the cause of 
instability. 

For the present case of viscous liquid sheets having a constant base velocity, the 
inviscid part of the solution as given in (23) remains bounded at the critical layer, in 
contrast with unboundedness of its counterpart for flow over a flat plate. Also both 
the inviscid and viscous parts of the solution shown in (23) and (24) are valid up to  
the critical layer. However, liquid viscosity induces a shift in frequency of the 
disturbance ; or equivalently, a change in the disturbance propagation velocity, as 
noted in the process of deriving the dispersion relation. Figure 3 (a )  demonstrates this 
change for viscous liquid sheets, where the two dashed curves represent the two 
stable waves of antisymmetrical disturbances on an inviscid liquid sheet, one 
propagating downstream, and the other upstream. It is clear that for aerodynamic 
instability (corresponding to a wavenumber between 0 and mo,I = 0.06); liquid 
viscosity has little effect. As seen in the figure, the results for inviscid and viscous 
liquid sheets coincide. However, over the wavenumber range from mo,I = 0.06 to  
m, = 0.16, the inviscid liquid sheet is stable (shown as dashed curves in the figure), 
while the presence of liquid viscosity shifts the wave velocity to  a higher value, and 
the disturbance becomes unstable, which is labelled as viscosity-enhanced instability 
in figure 3(a). Over this range, the solid curve in this figure actually represents the 
results for 2 = 0.1, 5, and 10, indicating that the disturbance frequency is changed 
only by the presence of liquid viscosity, but not its numerical value. 

Apart from the frequency shift, liquid viscosity also results in a phase shift in the 
liquid and gas pressure fluctuations. The gas and liquid pressures a t  the interfaces for 
antisymmetrical disturbances are 

U 

B 
P -  = (Sl+ 22m22,) tanh (m) 

where 6 is given in ( 1 ) .  For the axisymmetrical disturbances, tanh(m) in (50) is 
replaced by coth (m). 

The phase difference between the liquid and gas pressures a t  the interface is 
calculated from (49) and (50). One typical result is shown in figure 3 ( b )  where the 
parameters are the same as those in figure 3(a). In  the wavenumber range of m,,I = 
0.06 < m < m, = 0.16, the phase difference for inviscid liquid sheets (dashed, 2 = 0) 
is 180°, indicating that the liquid and gas pressures oscillate exactly out of phase. 
However, for the viscous liquid sheets, the gas and liquid pressure fluctuations are 
in phase-at least for part of each cycle (see figure 3 b ) .  This in-phase pressure 
fluctuation resonates with the aerodynamic waves on the interfaces, leading to 
amplification of disturbances. The resonant effect of pressure fluctuations has also 
been suggested by Lin & Kang (1987) as the primary mechanism for the atomization 
of circular liquid jets. The physical importance of the phase shift near the critical 
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FIGURE 3. ( a )  Wave velocity normalized by base flow velocity for antisymmetrical disturbances ; 
= 0.1 and We, = 0.16. ( b )  Phase difference between liquid and gas pressure fluctuations at the 

interfaces for antisymmetrical disturbances ; j7 = 0.1 and We, = 0.16. 

I 

layer due to viscosity as an instability mechanism was first pointed out by Prandtl 
(1921) and illustrated by Tollmien's (1929) calculation. 

Recently Frankel & Weihs (1987) demonstrated that, for a stretching jet, the 
destabilizing effect of viscosity is produced by an axial viscous force. However, i t  can 
be shown that such a mechanism for instability is directly associated with the 
stretching of the jet, i.e. the axial velocity gradient in the base flow. For a non- 
stretching jet (constant base flow velocity) as studied by Sterling & Sleicher (1975), 
the axial viscous force does not exist. Similarly, it can also be shown that for the 
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FIGURE 4. Non-dimensional growth rate for antisymmetrical disturbances. p = 0.1 and 
Weg = 0.1025, Curve 1, 2 = 0 ;  curve 2, Z = 0.1; curve 3, Z = 5;  curve 4, Z = 10. 

present case of a liquid sheet with constant base flow velocity such a mechanism for 
the destabilizing effect of viscosity cannot be present. 

4.2. Disturbance growth rate 

The growth rate is obtained by solving (39) or (40) through Muller’s method. Figure 
4 shows the non-dimensional growth 3, for antisymmetrical disturbances. The 
density ratio is P = 0.1 and gas Weber number is We, = 0.1025, which is just slightly 
larger than the critical value We,, = P = 0.1. Curve 1 in the figure corresponds to  an 
inviscid liquid sheet (2 = 0 ) ,  and thus represents aerodynamic instability; curve 2 is 
for a viscous liquid sheet of 2 = 0.1 ; curve 3 is for 2 = 5 and curve 4 for 2 = 10. It 
is evident that for this case liquid viscosity, through Ohnesorge number 2, has little 
effect on aerodynamic instability, while it increases the growth rate dramatically for 
the mode of viscosity-enhanced instability, which dominates instability process 
under the condition of 2 = 10. When We, is smaller than We,,, = 6, then the 
aerodynamic instability disappears completely ; only viscosity-enhanced instability 
will exist, and its growth rate curves are very similar to those shown in figure 4. 
Notice, particularly, the existence of two local maxima for viscous liquid sheets in 
this case. It should be pointed out that for curves 2, 3, and 4 in the figure, there is 
a range of wavenumbers (m w 0.003-0.014) for which the growth rate is very small 
(3, w O(lO-’)), but still positive. Hence it represents an unstable wave. 

However, when the gas Weber number becomes very large in comparison with 
We,,,, as is the case shown in figure 5 ,  there is no local maximum growth rate for 
viscosity-enhanced instability - aerodynamic instability controls the sheet insta- 
bility process. Liquid viscosity, effected through Ohnesorge number, reduces both 
the disturbance growth rate and shifts the dominant wave of the disturbances to  a 
longer wavelength. 

For axisymmetrical disturbances, the growth rate curves are always similar 
whether the gas Weber number is small or large. Aerodynamic instability always 
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FIGURE 6. Eon-dimensional growth rate for axisymmetrical disturbances. = 0.1 and We, = 4. 

prevails, and viscosity-enhanced instability has no local maximum growth rate. 
Liquid viscosity inhibits the development of disturbances, and reduces the growth 
rate quite effectively. Typical results are shown in figure 6. 

4.3. Maximum growth rate and dominant wavenumber 

The maximum growth rate and dominant wavenumber can be obtained from the 
condition d&,/dm = 0 and the dispersion relations. Figures 7 and 8 show these 
quantities for the aerodynamic instability of an inviscid liquid sheet. The solid lines 
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FIQURE 7. Non-dimensional maximum growth rate for inviscid liquid sheets. p’ = 0.1. Solid 

curve, antisymmetrical disturbances ; dashed curve, axisymmetrical disturbances. 

correspond to antisymmetrical disturbances, and the dashed curves to axi- 
symmetrical disturbances. Figure 7 (a) indicates that at small gas Weber number, 
axisymmetrical disturbances have a larger growth rate than antisymmetrical ones ; 
they dominate the instability process. As the gas Weber number increases, the 
maximum growth rate for both types of disturbances increases. However, that of 
antisymmetrical disturbances increases much faster and, above a certain gas Weber 
number, antisymmetrical disturbances become predominant (figure 7 a), and 
maintain this dominance over a wide range of gas Weber numbers (figure 7 b).  This 
is especially true at lower values of density ratios. This is the range of practical 
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we, 
FIGCRE 8. Kon-dimensional dominant wavenumber for inviscid liquid sheets. p = 0.1. Solid 

curve, antisymmetrical disturbances ; dashed curve, axisymmetrical disturbances. 

interest, which both Squire (1953) and Hagerty & Shea (1955) have studied. That is 
why they had concluded that antisymmetrical disturbances are more detrimental for 
inviscid liquid sheets. However, a t  very large gas Weber numbers, it is seen in figure 
7 ( b )  that the maximum growth rat,es for both types of disturbances approach each 
other, indicating that they become equally important. But this regime is rarely 
reached in practice, for the density ratio of gas to liquid encountered in practice is 
much smaller than the valuc of 0.1 used here. 

Figure 8 shows that for given conditions (fixed b and We,) the dominant 
wavenumber for axisymmetrical disturbances is always larger than the corre- 
sponding value for antisymmetrical ones, exccpt for very large gas Weber numbers 
where both types of disturbances reach asymptotically the same dominant 
wavenumber. The latter is consistent with the results of maximum growth rates 
shown in figure 7 ( 6 ) .  

Note that in figures 7 and 8, the maximum growth rate and dominant wavenumber 
for We, d We,,, = p" vanish for antisymmetrical disturbances. As discussed in $4.1, 
the instability does not exist for antisymmetrical disturbances under such conditions. 

For antisymmetrical disturbances, the effect of liquid viscosity via the Ohnesorge 
number is very complicated (see table 1). As noted in the previous section, there exist 
two local maxima of the growth rate a t  small Weber numbers, due to the presence 
of the two different modes of instability. However, the local maximum for 
aerodynamic instability disappears as the gas Wcber number becomes smaller than 
its critical value, while the local maximum for viscosity-enhanced instability 
vanishes a t  higher gas Weber numbers. The maximum growth rate is substantially 
increased by an increase in Z for viscosity-enhanced instability ; whereas it is hardly 
changed for aerodynamic instability a t  small gas Weber numbers. Although there is 
evidence, seen in table 1, that liquid viscosity slightly increases the maximum growth 
rate for We, = 0.1025 and 0.11, a t  We, = 0.16 and 0.2 initially liquid viscosity 
increases the maximum growth rate (see Z = 0.1 and 5), and then reduces it (see 



We, 
0.05 
0. I 
0.1025 
0.11 
0.16 
0.2 
0.5 
1 .o 
2.0 
3.0 
4.0 
5.0 

Antisymmetrical disturbances 

Viscosity-enhanced Aerodynamic 
z = 0.1 Z = 5  z =  10 z=o  z = 0.1 z = 5  z = 10 

0 .12146~ lo-' 0.43480X lo-' 0.869,54X lo-' 0 - - - 

0.77021 x lo-' 0.151 98x lo-' 0.30390x lo-' 0 - - - 

0.90593~ lo-' 0.17281 x lo-' 0 .34554~ lo-' 0 .19923~ lo-' 0 .19930~ lo-' 0 .19930~ LO-' 0.19930~ LO-' 
0.14548 x 0.24978 x lo-' 0.49943 x lo-' 0.302 12 x 0.30255 x lo-' 0.30255 x LO-' 0.30255 x LO-' 

- 0.18438~ LO-' 0 .36845~ lo-' 0.81191 x lo-' 0 .81715~ LO-* 0.81751 x lo-* 0 .81719~ lo-' 
- - - 0.18834~ lo-' 0 .18983~ lo-' 0 .19002~ lo-' 0 .18973~ lo-' 
- - - 0.13806 0.136 79 0.132 55 0.12808 
- - - 0.37901 0.36063 0.304 16 0.281 86 
- - - 0.9.54 86 0.84243 0.556 26 0.50308 
- ~ - 1.682 1 1.3970 0.75331 0.67548 
- - - 2.557 8 2.0399 0.92248 0.82320 
- - - 3.561 8 2.7635 1.074 1 0.95530 

TABLE 1. Maximum growth rate for = 0.1 

Axisymmetrical disturbances 

Aerodynamic 
z = o  z = 0.1 z = 5  z = 10 

0 .80419~10-~  0.59033xlO-' 0.31171~10-' 0.15615xIO-' 
0 .31852~ lo-' 0.23430~ lo-' 0 .12430~ 0.62459~ lo-' 
0.33448 x lo-* 0.24607 x lo-' 0.13099 x lo-' 0.65621 x lo-' 
0.38464~ lo-* 0.28306~ lo-* 0.15086~ lo-' 0 .75575~ lo-' 
0.80554 x lo-' 0.594 12 x lo-* 0.319 15 x lo-' 0.15989 x lo-' 
0.12482~ lo-' 0 .92232~ lo-' 0.498fHx lo-' 0 .24983~ lo-' 
0.73062~10-' 0 .54787~ lo-' 0.31151~10-~  0 . 1 5 6 1 2 ~ 1 0 - ~  
0.261 18 0.20039 0.12436~ lo-' 0 .62358~ lo-' 
0.852 47 0.670 14 0.48865 x lo-' 0.245 35 x lo-' 
1.6264 1.279 8 0.104 88 0.52743 x lo-' 
2.5324 1.9730 0.17380 0.87534 x lo-' 
3.551 2 2.7285 0.25048 0.126 33 

Antisymmetrical disturbances 

We, 
0.05 
0.1 
0.1025 
0.11 
0.16 
0.2 
0.5 
1 .o 
2.0 
3.0 
4.0 
5.0 

Viscosity-enhanced 
z = 0.1 Z = 5  z = 10 

0.33650 x LO-' 0.39886 x LO-' 0.39887 x lo-' 
0.54893 x lo-' 0.78008 x lo-' 0.780 15 x lo-' 
0.5.5717~10-' 0 .79845~ lo-' 0.798.52~ lo-' 
0.57937 x lo-' 0.85301 x lo-' 0.853 10 x lo-' 

- 0.11834 0.11836 
- - - 

Aerodynamic 
z = o  z = 0.1 z = 5  z =  10 

- - - 0 
0 
0.18691 x lo-' 0.18694~ lo-* 0 .18697~ lo-* 0.18696~ lo-' 
0.74084 x lo-* 0.741 75 x lo-' 0.741 76 x lo-' 0.741 76 x lo-' 
0.42903 x LO-' 0.42566 x lo-' 0.42584 x lo-' 0.42566 x lo-' 
0.68424 x lo-' 0.68988 x lo-' 0.69047 x lo-' 0.689 18 x lo-' 
0.243 77 0.241 98 0.22747 0.21542 
0.52040 0.491 .50 0.35594 0.31414 
1.1247 0.98708 0.45904 0.38793 
1.767 4 I ,526 6 0.51404 0.42643 
2.4000 2.0760 0.55307 0.45322 
3.0197 2.61 18 0.584 14 0.474 13 

- - - 

TABLE 2. Dominant wavenumber for p' = 0.1 

Axisymmetrical disturbances 

Aerodynamic 
z = o  z = 0.1 z = 5  z =  10 

0.37300 x LO-' 0.33858 x lo-' 0.2.5062 x LO-' 0.25016 x lo-' 
0.741 98 x LO-' 0.67428~ lo-' 0.501 24 x lo-' 0.50031 x lo-' 
0.76032 x lo-' 0.69099 x lo-' 0.51377 x lo-' 0.51282 x lo-' 
0.81529 x lo-' 0.741 08 x lo-' 0.551 36 x lo-' 0.55034 x lo-' 
0.11794 0.107 33 0.80198 x lo-' 0.80050 x lo-' 
0.146 79 0.13371 0.10025 0.10006 
0.35544 0.32600 0.25058 0.250 12 
0.678 83 0.627 73 0.49997 0.49904 
1.2780 1.1820 0.971 83 0.96986 
1.8600 1 596 0 1.3596 1.3560 
2.4462 2.191 5 1.653 4 1.647 2 
3.0404 2.681 4 1.877 5 1.867 9 

Y z 

8 
c 
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Z = 10). At large gas Weber numbers, the maximum growth rate is reduced 
drastically. 

For axisymmetrical disturbances, there is no local maximum of the growth rate for 
viscosity-enhanced instability. Liquid viscosity always decreases the maximum 
growth rate for aerodynamic instability (which always prevails for this type of 
disturbance). It is clear from table 1, for an axisymmetrical disturbance, that liquid 
viscosity is effective in reducing the maximum growth rate. For all modes of 
instability, table 1 shows that the maximum growth rate increases with gas Weber 
number, and also confirms that the general results for inviscid liqud sheets are also 
valid for viscous liquid sheets. That is, a t  small gas Weber numbers axisymmetrical 
disturbances are more dangerous to sheet stability; while a t  high gas Weber numbers 
antisymmetrical disturbances are more detrimental to sheet stability. In the 
intermediate range, the growth rate for both types of disturbances becomes 
comparable, signifying their equal importance in the development of instability 
processes. However, the dominant wavenumbers are different for each type of 
disturbance, for example see We, = 0.16 and Z = 0 4 . 1  in tables 1 and 2 or figures 7 
and 8. This may indicate the origin of the bimodal distribution of the subsequently 
formed drop sizes; if it is assumed, as is usual, that the size of the drops is 
proportional to the wavelength of dominant disturbances. 

Table 2 shows the dominant wavenumber, corresponding to the maximum growth 
rate given in table 1. The general tendency of the variations of the dominant 
wavenumber and the effects of liquid viscosity resemble closely those of the 
maximum growth rate - except that liquid viscosity is more effective in reducing the 
dominant wavenumber of antisymmetrical disturbances. 

For most practical applications, aerodynamic instability of antisymmetrical 
disturbances prevails (that is, We, % We,,, = p”), since the density ratio and 
Ohnesorge number are usually very small. For example, a water sheet in atmospheric 
air gives p” = O( lop3) and Z = O( lo+) for sheets as thin as 10 pm, and Z = O( 10-l) for 
sheet thickness of 1 pm ; and the disturbances are still waves of long wavelength, such 
that tanh (m) x m is valid. Furthermore, for the dominance of aerodynamic 
instability, p“/m 4 1 holds. The above approximations have been considered by 
Squire (1953), Hagerty & Shea (1955) as well as many other investigators of this 
subject. Under these conditions, the maximum growth rate (3: and dominant 
wavenumber m* can be obtained from (39) by perturbation expansion techniques in 
terms of the small parameter 2; that is, 

q = (3;,,-223;,z, (51) 

and m* = m:-2m:2Z, (52) 

where m: = awe, and a;, = +We, are the dominant wavenumber and maximum 
growth rate, respectively, for inviscid liquid sheets, a result obtained originally by 
Squire (1953). It is clear that for the prevailing aerodynamic instability (of 
antisymmetrical disturbances) on a liquid sheet in a gas medium, liquid viscosity acts 
to reduce the dominant wavenumber and shift the dominant disturbance to a longer 
wavelength. 

5. Conclusions 
This paper reports a temporal instability analysis of a moving thin viscous liquid 

sheet in an inviscid gas medium. The results show that surface tension always 
opposes, while surrounding gas and relative velocity between the sheet and gas 
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favour, the onset and development of instability. It is found that there exist two 
modes of instability for viscous liquid sheets - aerodynamic and viscosity-enhanced 
instability -in contrast to  inviscid liquid sheets for which the only mode of 
instability is aerodynamic. It is also found that axisymmetrical disturbances control 
the instability process for small Weber numbers ; while antisymmetrical disturbances 
dominate for large Weber numbers. 

For antisymmetrical disturbances, liquid viscosity, through Ohnesorge number, 
enhances instability a t  small Weber numbers, while reducing the growth rate and 
dominant wavenumber a t  large Weber numbers. At an intermediate Weber-number 
range, liquid viscosity has complicated effects due to the interaction of viscosity- 
enhanced and aerodynamic instabilities. In  this range, the growth rate curve exhibits 
two local maxima, one corresponding to aerodynamic instability, for which liquid 
viscosity has vanishing effect, and thc othcr due to viscosity-enhanced instability, 
which is greatly influenced by the presence and variation of liquid viscosity. 

For axisymmetrical disturbances, liquid viscosity always reduces the growth rate 
and dominant wavenumber, and aerodynamic instability always prevails. The 
regime of viscosity-enhanced instability is always present, but its growth rate curve 
does not possess a local maximum. 

A t  large Weber numbers, liquid viscosity is more effcctive in reducing the growth 
rate of axisymmetrical disturbances than antisymmetrical disturbances. Liquid 
viscosity is more effective in decreasing the dominant wavenumber of anti- 
symmetrical disturbances than that of axisymmetrical disturbances. 
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